尊龙ag旗舰厅下载

习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8

  • 博客访问: 983159
  • 博文数量: 71
  • 用 户 组: 普通用户
  • 注册时间:2019-04-25 03:45:36
  • 认证徽章:
个人简介

(二)精心组织,确保各项工作落到实处。

文章分类

全部博文(493)

文章存档

2015年(517)

2014年(625)

2013年(817)

2012年(702)

订阅

分类: 北京热线010

尊龙ag旗舰厅下载,(摘编自王雪松《论新月派的和谐节奏诗学》)1.下列关于原文内容的理解和分析,正确的一项是(3分)(  )A.胡适与郭沫若、戴望舒所提倡的“自然与自由”节奏论,给诗人们的创作留下了极大的理论空间。只要不超过中国人民银行同期限档次存款利率上限,计结息规则由各银行自行把握。利来娱乐国际跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不(二)回购市场回购市场是指对回购协议进行交易的短期融资市场。

这在杀菌的同时也可能引入了新的健康隐患,因此我们认为对于羽绒微生物限量要求应适可而止,过度要求无菌反而会产生适得其反的效果。”她把自己的服装语言概括为:简化、美化日常生活。利来娱乐ag旗舰厅不断完善城市低保制度。鉴于大部分生产空气源热泵产品的企业并不生产中央空调,因此我们统计的其它类产品中并不包含空气源热泵产品。

阅读(615) | 评论(688) | 转发(689) |
给主人留下些什么吧!~~

任鹏博2019-04-25

江瑜第二条使用范围本办法适用于公司转正后的副总经理级以下具有绩效工资的员工(保安、保洁和厨师除外),但在一个考核周期内,具有下列情况的员工,当月绩效得分为0。

ChemicalLaboratory-Kao.,:KE/2018/12659Date:2018/2/5Page:,SHIHHUA1STRD.,LINYUANDISTRICT,KAOHSIUNGCITY832,TAIWAN()Thefollowingsample(s)was/weresubmittedandidentifiedby/onbehalfoftheclientas:SampleDescription:POLYPROPYLENEIMPACTCOPOLYMERStyle/ItemNo.:3003,3003H,3004,3005,3005H,3010,3015,3020,3040,3040C,3064H,3080,3084,3084H,3090,3155,3200W,3204,3354,3504,4084,4204,4304,4604,:POLYPROPYLENEIMPACTCOPOLYMERColor:CLEARSampleReceivingDate:2018/01/30TestingPeriod:2018/01/30TO2018/2/5SampleSubmittedBy:FORMOSAPLASTICSCORPORATION============================================================================================TestResult(s):Pleaserefertonextpage(s).Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,Serviceprintedoverleaf,availableonrequestoraccessibleat/terms_and_,forelectronicformatdocuments,subjecttoTermsandConditionsforElectronicDocumentsat/terms_e-doc

张亚凡2019-04-25 03:45:36

亲代子代配子比例1:1一般1:1鸟类、鳞翅目昆虫、一些两栖类和爬行类等。

闫洋洋2019-04-25 03:45:36

A.政务微博微信B.新闻媒体C.政务客户端D.社会群众6.在国务院办公厅关于推进重大建设项目批准和实施领域政府信息公开的意见中,各级政府和有关部门要通过ABCD等及时公开各类项目信息,并及时回应公众关切。,习近平总书记的回信极大地鼓舞了在俄全体留学人员和我们驻外教育干部。。(三)深化党建引领,统筹推进各项重点工作一是聚焦党的政治建设,加强基层党建。。

陆叡2019-04-25 03:45:36

 条件概率第2章 独立性学习目标1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).答案思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.答案答案 事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.答案(1)条件概率的概念一般地,对于两个事件A和B,在已知发生的条件下发生的概率,称为事件B发生的条件下事件A的条件概率,记为.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=.②利用条件概率,有P(AB)=.梳理事件B事件AP(A|B)P(A|B)P(B)知识点二 条件概率的性质1.任何事件的条件概率都在之间,即.2.如果B和C是两个互斥的事件,则P(B∪C|A)=.0和10≤P(B|A)≤1P(B|A)+P(C|A)题型探究命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;解 设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.解答类型一 求条件概率(2)求这个代表恰好是团员代表的概率;解答(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解答用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型.(2)计算P(A),P(AB).(3)代入公式求P(B|A)=反思与感悟跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=____.答案解析命题角度2 缩小基本事件范围求条件概率例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率解答引申探究1.在本例条件下,求乙抽到偶数的概率.解答解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解答解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.反思与感悟跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解答解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次,性别主要是由基因决定的。。1、下列哪种药物适合制成胶囊剂 A、易风化的药物B、吸湿性的药物C、药物的稀醇水溶液 D、具有臭味的药物E、油性药物的乳状液2、空心胶囊是以__明胶____为主要原料制成的。。

张凌人2019-04-25 03:45:36

四、课后作业,还有个别单位仍存在信息语言与新闻语言不分的问题(信息——领导,新闻——大众),所以信息要多用动词,不用或尽量少用带有主观色彩的形容词。。A.投标采购B.集中采购C.招标采购D.招商采购11.在《关于对公共资源交易领域严重失信主体开展联合惩戒的备忘录》的通知中,公共资源交易平台整合部际联席会议成员单位依据法律、法规、规章和规范性文件规定,可以在公共资源交易领域对惩戒对象采取法规限制失信企业参与药品和医疗器械A及配送活动的惩戒措施。。

杨新波2019-04-25 03:45:36

PAGEPAGE2第一节地球和地球仪一、学习目标1.在地图上找出秦岭、淮河,并说明秦岭—淮河一线的意义。,手套用完后,应先消毒再摘除,随后必须洗手。。(×)4.“中国招标投标公共服务平台”、各省级发布媒介以及相关电子招标投标交易平台应当按照《招标公告和公示信息发布管理办法》和《电子招标投标办法》(国家发展改革委第18号令)的要求。。

评论热议
请登录后评论。

登录 注册

利来国际ag国际厅 w66利来娱乐 利来AG旗舰厅 利来国际旗舰厅 利来娱乐国际ag旗舰厅
国际利来旗舰厅 利来国际备用 利来国际最老牌 www.w66.com 利来 利来娱乐w66
利来娱乐城 利来国际w66 利来国际app旗舰厅 利来国际娱乐w66 利来电游
利来国际手机版 利来国际最老牌 利来国际娱乐 利来电游彩金 利来国际w66.com
海丰县| 久治县| 河西区| 南木林县| 桃源县| 耒阳市| 杂多县| 沁水县| 灵台县| 东阿县| 江阴市| 施秉县| 张北县| 封丘县| 固原市| 清徐县| 铁力市| 富阳市| 当涂县| 五大连池市| 南川市| 韶山市| 阿合奇县| 西昌市| 郑州市| 江孜县| 佳木斯市| 集贤县| 莎车县| 南召县| 济源市| 灵川县| 乐至县| 蒲城县| 林芝县| 灌南县| 偏关县| 丹凤县| 仁化县| 永和县| 来安县| http://m.27707185.cn http://m.18438787.cn http://m.15923259.cn http://m.02403032.cn http://m.06814713.cn http://m.02684413.cn